FA2H is responsible for the formation of 2-hydroxy galactolipids in peripheral nervous system myelin.
نویسندگان
چکیده
Myelin in the mammalian nervous system has a high concentration of galactolipids [galactosylceramide (GalCer) and sulfatide] with 2-hydroxy fatty acids. We recently reported that fatty acid 2-hydroxylase (FA2H), encoded by the FA2H gene, is the major fatty acid 2-hydroxylase in the mouse brain. In this report, we show that FA2H also plays a major role in the formation of 2-hydroxy galactolipids in the peripheral nervous system. FA2H mRNA and FA2H activity in the neonatal rat sciatic nerve increased rapidly during developmental myelination. The contents of 2-hydroxy fatty acids were approximately 5% of total galactolipid fatty acids at 4 days of age and increased to 60% in GalCer and to 35% in sulfatides at 60 days of age. The chain length of galactolipid fatty acids also increased significantly during myelination. FA2H expression in cultured rat Schwann cells was highly increased in response to dibutyryl cyclic AMP, which stimulates Schwann cell differentiation and upregulates myelin genes, such as UDP-galactose:ceramide galactosyltransferase and protein zero. These observations indicate that FA2H is a myelination-associated gene. FA2H-directed RNA interference (RNAi) by short-hairpin RNA expression resulted in a reduction of cellular 2-hydroxy fatty acids and 2-hydroxy GalCer in D6P2T Schwannoma cells, providing direct evidence that FA2H-dependent fatty acid 2-hydroxylation is required for the formation of 2-hydroxy galactolipids in peripheral nerve myelin. Interestingly, FA2H-directed RNAi enhanced the migration of D6P2T cells, suggesting that, in addition to their structural role in myelin, 2-hydroxy lipids may greatly influence the migratory properties of Schwann cells.
منابع مشابه
FA2H-dependent fatty acid 2-hydroxylation in postnatal mouse brain.
2-Hydroxy fatty acids are relatively minor species of membrane lipids found almost exclusively as N-acyl chains of sphingolipids. In mammals, 2-hydroxy sphingolipids are uniquely abundant in myelin galactosylceramide and sulfatide. Despite the well-documented abundance of 2-hydroxy galactolipids in the nervous system, the enzymatic process of the 2-hydroxylation is not fully understood. To fill...
متن کاملAbsence of 2-hydroxylated sphingolipids is compatible with normal neural development but causes late-onset axon and myelin sheath degeneration.
Sphingolipids containing 2-hydroxylated fatty acids are among the most abundant lipid components of the myelin sheath and therefore are thought to play an important role in formation and function of myelin. To prove this hypothesis, we generated mice lacking a functional fatty acid 2-hydroxylase (FA2H) gene. FA2H-deficient (FA2H(-/-)) mice lacked 2-hydroxylated sphingolipids in the brain and in...
متن کاملTopical Review Is the Myelin Membrane Abnormal in Multiple Sclerosis?
Myelin, a multilamellar membrane surrounding nerve fibers of both the central and peripheral nervous systems, is derived from the plasma membrane of the oligodendrocyte (CNS) and Schwann cell (PNS). The chemical composition of myelin differs markedly from that of its progenitor membrane. In addition, the chemical composition of CNS myelin differs from that of PNS myelin. This review will be con...
متن کاملGalactolipids in the formation and function of the myelin sheath.
Among the most abundant components of myelin are the galactolipids galactocerebroside (GalC) and sulfatide. In spite of this abundance, the roles that these molecules play in the myelin sheath are not well understood. Until recently, our concept of GalC and sulfatide functions had been principally defined by immunological and chemical perturbation studies that implicate these lipids in oligoden...
متن کاملAxo-Glial Interactions Regulate the Localization of Axonal Paranodal Proteins
Mice incapable of synthesizing the abundant galactolipids of myelin exhibit disrupted paranodal axo-glial interactions in the central and peripheral nervous systems. Using these mutants, we have analyzed the role that axo-glial interactions play in the establishment of axonal protein distribution in the region of the node of Ranvier. Whereas the clustering of the nodal proteins, sodium channels...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of lipid research
دوره 49 1 شماره
صفحات -
تاریخ انتشار 2008